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ABSTRACT

In this study, decadal variability of ice cover in the Great Lakes is investigated using historical airborne and

satellite measurements from 1963 to 2017. It was found that Great Lakes ice cover has 1) a linear relationship

with the Atlantic multidecadal oscillation (AMO), similar to the relationship of lake ice cover with the North

Atlantic Oscillation (NAO), but with stronger impact than NAO; 2) a quadratic relationship with the Pacific

decadal oscillation (PDO), which is similar to the relationship of lake ice cover to Niño-3.4, but with opposite

curvature; and 3) decadal variability with a positive (warming) trend in AMO contributes to the decreasing

trend in lake ice cover. Composite analyses show that during the positive (negative) phase of AMO, theGreat

Lakes experience a warm (cold) anomaly in surface air temperature (SAT) and lake surface temperature

(LST), leading to less (more) ice cover. During the positive (negative) phase of PDO, the Great Lakes

experience a cold (warm) anomaly in SAT and LST, leading tomore (less) ice cover. Based on these statistical

relationships, the original multiple variable regression model established using the indices of NAO andNiño-
3.4 only was improved by adding bothAMOand PDO, as well as their interference (interacting or competing)

mechanism.With the AMO and PDO added, the correlation between the model and observation increases to

0.69, compared to 0.48 using NAO and Niño-3.4 only. When November lake surface temperature was further

added to the regression model, the prediction skill of the coming winter ice cover increased even more.

1. Introduction

The Laurentian Great Lakes are located in the mid-

latitude area of eastern North America (Fig. 1). The

westerly jet stream is located aloft at varying latitudes in

the region. The fluctuation of the westerly jet stream is

controlled by the North America ridge–trough system

(Bai and Wang 2012), which is influenced by large-scale

atmospheric teleconnection patterns such as El Niño–
Southern Oscillation (ENSO) and the North Atlantic

Oscillation (NAO) (Wang et al. 2010; Bai et al. 2012), as

well as theAtlantic multidecadal oscillation (AMO) and

Pacific decadal oscillation (PDO). The fluctuation of the

jet stream causes large variations in the Great Lakes

region on synoptic, seasonal, and interannual time

scales, leading to large uncertainty in the prediction of

regional climate and ice cover.

The teleconnection patterns in both the Pacific and

the Atlantic should have impacts on the Great Lakes

regional climate and ice cover through influencing the

ridge–trough system over North America, which de-

termines the pathway and strength of the westerly jet

stream (Bai and Wang 2012). The Pacific ENSO and

PDO are located upstream of theGreat Lakes, while the

NAO and AMO are located downstream along the

westerly jet. Any anomalies of upstream and down-

stream caused by these four patterns would change the

ridge–trough intensity and pathway of the jet stream

over North America. Therefore, the combined effects of

these teleconnection patterns can significantly change

lake ice cover through the advection of surface air tem-

perature (SAT) by the jet stream. This is the key un-

derlying dynamic process, even though a single pattern

Denotes content that is immediately available upon publication

as open access.

Corresponding author: Jia Wang, jia.wang@noaa.gov

15 SEPTEMBER 2018 WANG ET AL . 7249

DOI: 10.1175/JCLI-D-17-0283.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:jia.wang@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


may not be statistically significantly correlated with lake

ice (Mishra et al. 2011; Bai et al. 2012).

Bai et al. (2012) conducted a systematic review of

literature on Great Lakes climate and ice cover.

Through thorough data synthesis, they revealed several

important findings: 1) Great Lakes ice cover and NAO

have a linear relationship, 2) Great Lakes ice cover and

Niño-3.4 have a quadratic relationship, which is consis-

tent with the nonlinear relationship between ENSO and

the SAT (Wu et al. 2005), and 3) both Niño-3.4 and NAO

have competing impacts on lake ice cover; however,

neither of them dominate. Based on these findings, a

regression model was established to hindcast the lake ice

cover, using NAO and Niño-3.4 indices only, yielding

simulated results that correspond to observed ice cover

with a correlation of 0.50 for the period 1963–2011. This

regression model was used to project lake ice cover since

2010; however, some extreme (both mild and severe) ice

covers were muted, that is, ice in severe winters was un-

derestimated and ice in mild winters was overestimated.

Although this model has been used since early winter

of 2010 (between late December and early January) to

project annual maximum ice coverage (AMIC) each

year using the projected NAO and Niño-3.4 indices, it

was often seen that the predicted AMIC was systemat-

ically lower than the observed AMIC in the severe

winters. This indicates that some important predictive

factors were missing. For example, this model was used

to project AMIC to be 63% in the 2013/14 season, while

the measuredAMIC was 93% on 24 February 2014. The

relative error of 30% was too large to be satisfactory in

practice. Therefore, one important, practical motivation

is to use the validated regression models developed here

to project Great Lakes seasonal AMIC using projected

indices of the teleconnection patterns.

The idea to project lake ice cover directly using the

indices of teleconnection patterns is based on the pre-

vious diagnostic studies. Generally speaking, telecon-

nection patterns control the sea level pressure (SLP)

pattern (i.e., the wind pattern, which causes warm or

FIG. 1. The Great Lakes region, topography, and bathymetry. For Lakes Superior, Michigan, Huron, St. Clair,

Erie, and Ontario, the average water depths are 148, 84, 59, 3, 19, and 85m, respectively, and the average surface

areas are 82 400, 58 000, 59 596, 1114, 25 744, and 19 500 km2, respectively. Locations of the nine NDBC buoys are

labeled.
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cold anomalous SAT by dynamical advection). Winter

SAT has an inverse correlation with lake ice cover

with a coefficient of about 20.8 (Bai et al. 2011, 2012).

At the same time, teleconnection patterns also influ-

ence water temperature and water heat content, which

in turn affects ice formation. The teleconnection–SLP–

SAT cause–effect mechanism only takes into account

the SAT effect, but not other factors. However, it

should be noted that the observed lake ice cover in-

cludes all environmental effects, not only from the

teleconnection–SLP–SAT mechanism, but also from

water temperature and its (depth dependent) heat

content (Fig. 1), as well as other factors such as runoff,

air–ice–lake energy transport, and advection of heat

into and out of the region. Therefore, using telecon-

nection indices to forecast lake ice cover should add

more to the model than using SLP (i.e., wind field) and

SAT only on the seasonal time scales, because seasonal

projection of local SAT is not as reliable as the global

teleconnection indices.

Wang et al. (2012a) examined both temporal and

spatial variability ofGreat Lakes ice cover for the period

1973–2010. The first mode of lake ice is associated

with theNAO,which significantly influences SAT on the

Great Lakes, while the second mode of lake ice is as-

sociated with the ENSO-like Pacific pattern, which has

a nonlinear impact on SAT on the Great Lakes because

the zero line of the anomaly is across the midbasin of the

Great Lakes dividing the north (positive SAT anomaly)

and the south (negative SAT anomaly). A large negative

trend in annual average ice cover was observed. With

the last seven years of data added to the ice dataset

(Wang et al. 2012b, 2017a), particularly with high ice

cover during the 2013/14 and 2014/15 winters, an update

of the data is necessary for better understanding of the

mechanisms of decadal and multidecadal variability in

lake ice.

Previous studies (Magnuson et al. 2000; Ghanbari

et al. 2009; Weyhenmeyer et al. 2011; Mishra et al. 2011)

showed that there is a weak linear relationship between

little lake ice cover in North America and the AMO and

PDO, in addition to, ENSO and NAO, or the Arctic

Oscillation (AO). No further investigations combining

these patterns were conducted. In other words, no

quantitative relationships were derived, although they

qualitatively revealed the relationships to some degree.

The purpose of this study is to 1) investigate decadal

variability of Great Lakes ice cover and associated at-

mospheric dynamic processes, 2) reveal the underlying

mechanisms of the lake ice decadal variability in re-

sponse to AMO and PDO, and 3) establish updated

regressionmodels for better hindcasting of seasonal lake

ice cover using the indices of teleconnection patterns,

which can be used to project seasonal lake ice cover

using projected indices of these teleconnection patterns.

2. The data

a. Great Lakes ice dataset

AMIC for the Great Lakes is defined as the greatest

percentage of lake surface area covered by ice each

winter. AMIC for each lake and the Great Lakes as a

whole for winters 1963–2017 was calculated using the

dataset archived at the NOAA/Great Lakes Environ-

mental Research Laboratory (Assel et al. 2003; Wang

et al. 2012b, 2017a,b; https://www.glerl.noaa.gov/data/

ice/#historical), which is largely based on ice charts

produced by the U.S. National Ice Center. Systematic

lake-scale observations of Great Lakes ice cover began

in the 1960s by federal agencies in the United States

(U.S. Army Corps of Engineers and U.S. Coast Guard)

and Canada (Atmospheric Environment Service and

Canadian Coast Guard) to support early- and late-

season navigation, the closing of the navigation sea-

son in winter, and the opening of navigation in spring.

Observations were made at irregular intervals primarily

to support operational activities. Ice charts depicting ice

concentration patterns and ice extent during 1963–72

were constructed from side-looking airborne radar im-

agery and visual aerial ice reconnaissance (Assel and

Rodionov 1998).

Systematic satellite measurements have been avail-

able since 1973. Two datasets were used in this study;

one is from the Canadian Ice Service (CIS) and the

other is from the U.S. National Ice Center (NIC), a co-

operative effort between theU.S. Navy, NOAA, and the

Coast Guard. The CIS data span the time period from

1973 to 1988. From 1989 to present, these agencies have

coordinated their data. During the ice year, each agency

has at least one chart per week—more frequently during

ice onset and ice offset periods to aid navigation. Start-

ing in 2011, the charts have been produced daily. The

1973 ‘‘ice year’’ refers to the period from November

1972 to May 1973. Ice concentration was derived from

NICGreat Lakes ice analysis charts, which are based on

satellite products from RadarSat, Environmental Satel-

lite (Envisat),AdvancedVeryHighResolutionRadiometer

(AVHRR), Geostationary Operational Environmental

Satellite (GOES), Moderate Resolution Imaging Spec-

troradiometer (MODIS), and other available data.

The normalized AMIC is defined as the difference

between the AMIC and its climatology (mean), divided

by its standard deviation. The AMIC of the whole Great

Lakes has a significant negative correlation (;20.8)

with the Great Lakes area-averaged winter SAT during
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the period 1963–2010, indicating that the interannual

variability of Great Lakes ice cover is mainly controlled

by the SAT (Bai et al. 2011). Although Great Lakes ice

cover is closely correlated with the overlying SAT, there

is some complexity in the causal relationship, as the lake

and air can act as sources and sinks of heat for each

other. Advection of heat fromother regions plays a large

role in the availability of heat for the lake–atmosphere

system in the immediate Great Lakes region.

b. Climate indices

The Niño-3.4 sea surface temperature (SST) anomaly

index was used as a marker of ENSO variability to

identify the warm and cold episodes during 1963–2017

based on a threshold of60.58C. Cold andwarm episodes

are defined as those periods for which the threshold

is met for a minimum of five consecutive overlapping

seasons such as November–January (NDJ), December–

February (DJF), January–March (JFM), and so on.

Otherwise, the winter is defined as ENSO neutral. The

index is defined as the 3-month running mean of Ex-

tended Reconstructed Sea Surface Temperature, ver-

sion 3 (ERSST.v3), SST anomalies in the Niño-3.4
region [58N–58S, 1208–1708W; obtained from the NOAA/

Climate Prediction Center (CPC) online at http://www.

cpc.noaa.gov/products/analysis_monitoring/ensostuff/

ensoyears.shtml]. The strong warm (cold) winters are

defined as the DJF periods when the mean index exceeds

1.08C (21.08C), and weak warm and cold winters are

defined as DJF periods when the mean index has anom-

alies between 0.58 and 1.08C.
The monthly NAO index from 1963 to 2017 was ob-

tained from the University of East Anglia Climatic

Research Unit, United Kingdom (available online at

http://crudata.uea.ac.uk/cru/data/nao/). The NAO is

defined as the normalized sea level pressure difference

between the Azores and Iceland. A winter is defined as

having a positive (negative) phase when the DJF mean

index exceeds10.5 (20.5) standard deviation; otherwise

a winter is defined as NAO neutral.

The PDO index is the leading empirical orthogonal

function (EOF) of monthly sea surface temperature

anomalies (SSTAs) over the North Pacific (poleward of

208N) after the global mean SST has been removed. The

PDO index is the standardized principal component time

series (Mantua et al. 1997; Zhang et al. 1997) (available on-

line at http://research.jisao.washington.edu/pdo/PDO.latest

and https://www.ncdc.noaa.gov/teleconnections/pdo/).

The AMO was identified by Schlesinger and

Ramankutty (1994). The AMO signal is usually de-

fined from the patterns of SST variability in the North

Atlantic once any linear trend has been removed.

This detrending is intended to remove the influence

of greenhouse gas–induced global warming from the anal-

ysis (Ting et al. 2009). TheAMO indexwas obtained online

from http://www.esrl.noaa.gov/psd/data/timeseries/AMO/.

c. Lake surface temperature

Satellite-measured lake surface temperature (LST)

over the Great Lakes for the period 1995–2016 was ob-

tained from the Great Lakes Surface Environmental

Analysis (GLSEA; available online at https://coastwatch.

glerl.noaa.gov/glsea/glsea.html). Themonthly values were

used to produce the seasonal climatology; then the

monthly or winter (January, February, andMarch) and

summer (July, August, and September) anomaly maps

were derived by subtracting the climatology.

Buoy LST data, available from 1982 to 2016, for the

Great Lakes were from the National Data Buoy Center

(NDBC). There are three buoys (45001, 45002, and

45003) in Lake Superior, two (45004 and 45005) in Lake

Michigan, two (45006 and 45007) in Lake Huron, and

one (45008) in Lake Erie (see Fig. 1 for location). Buoy

data for Lake Ontario start in 2002, and thus were not

included. These time series were used to construct a

regression model.

d. Methods

The methods used in this study include scattering

analysis, correlation analysis, composite analysis, and

multivariable regression. Following the scatter analysis

of the relationships between the AMIC and the NAO

and ENSO (Bai et al. 2012), the relationships between

the AMIC and the AMO and PDO are established.

Using correlation analysis, the correlation coefficients

between the AMIC and the AMO and PDO are quan-

titatively identified. Based on the linear or nonlinear

relationship between the AMIC and the AMO and

PDO, multivariable regression models using R software

are constructed, including their interference or in-

teraction (i.e., competing)mechanism between each two

teleconnection patterns.

Composite analysis is a conventional method to show

the representations associated with a certain climate

event such as the AMO and PDO in this study by av-

eraging the data over the warm and cold years (phases).

Because of the small samples available in this study, the

Student’s t distribution was used to determine the sta-

tistical significance between the means of the two sam-

ples. Comparing the differences between the two means

using the Student’s t test requires two independent

samples of sizes n1 and n2, which possess means and

standard deviations given by x1 and x2 and s1 and s2,

respectively. Our null hypothesis H0 is when the two

samples are statistically indistinguishable from each

other. To test H0, we use the conventional t score
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which is a value of a random variable having a t distri-

bution with n1 1 n2 2 2 degrees of freedom. The null

hypothesis is rejected if the two-tailed t score exceeds

the 95% confidence interval.

To measure the regression model’s skill for re-

producing the measurements, a statistical measure is

introduced to conduct the model–data comparison.

Root-mean-square deviation (RMSD) is defined as

RMSD5

2
6664
�
N

i51

(x
i
2 y

i
)2

N

3
7775
1/2

, (2)

where xi and yi (i 5 1, 2, 3, . . . , N) are the modeled and

observed time series of any variable such as ice area,

LST, and so on, and N is the total sampling number.

RMSDmeasures the absolute error of the modeled time

series against observation.

To measure the statistical importance of a correlation

between two time series, the significance level in this

study is estimated by a Monte Carlo simulation (Livezey

and Chen 1983; Wang et al. 1994). This method includes

four basic steps: 1) randomize one of the original time

series; 2) retrieve the original lag-1 autocorrelation in all

random series; 3) calculate the correlation coefficients

between the original time series and the randomized time

series; and 4) find the critical value at which only 5% of

coefficients obtained in step 3 are above this value (i.e.,

the significance level).

3. Results

a. Monthly mean AMIC over 1973–2017

Figure 2 shows the spatial distribution of Great Lakes

monthly AMIC for December–April averaged over the

period 1973–2017. In late November–early December,

ice starts to form along the shallow coasts and embay-

ments in Lake Superior and progresses into January

from north to south, reaching the maximum ice cover in

February in the southern lakes (Lakes Erie andOntario)

and in March in the northern lakes (Lakes Superior and

Huron). Ice gradually decays in April.

b. Decadal variability

The decadal variability in small lakes was investigated

by previous studies (Magnuson et al. 2000; Ghanbari

et al. 2009; Weyhenmeyer et al. 2011). However, no

further quantitative modeling was conducted. Here, by

extending the previous time series (1973–2010; Wang

et al. 2012a) with the last 7 years (2011–17) as well as

the preceding 10 years (1963–72), decadal variability

further stands out (Figs. 3 and 4). During this 54-yr pe-

riod, four high ice bands stand out: 1963–64, 1977–79,

1994, and 2014–15 (Clites et al. 2014), with separation

periods of 15, 17, and 21 years, respectively. Figure 4

shows the spatial maps of the record-breaking years of

1979, 1994, and 2014. Similarly, four low ice bands also

stand out: 1964–65, 1983, 1998–2002, and 2010–2013,

separated by around 20, 18, and 12 years, respectively.

The longest low ice band started in 1998 and lasted to

2013. The 1997/98 El Niño was the largest El Niño event

in the twentieth century, which may be associated with a

regime shift in lake ice cover (Van Cleave et al. 2014)

and other environmental components. Note that the

2015/16 El Niño event was the strongest event of the

twenty-first century, which was stronger than the 1997/98

event. This is part of the remarkable downward trend

observed (Fig. 3; Wang et al. 2012a), which can be at-

tributed to a combination of multidecadal variability and

human-caused secular climate warming. The 5-yr running

mean indicates that the decadal variability in lake ice has a

largest peak in 1981 and a smallest peak in 2002, with a

downward trend superimposed with large interannual

variability.

4. Great Lakes ice cover in response to AMO and
PDO

a. PDO and AMO teleconnection patterns and their
impact on the Great Lakes

The PDO is similar to ENSO in spatial impact on

Northern Hemisphere climate, but on decadal time scales.

As its name would suggest, the PDO lasts decades—

usually between 10 and 30 years. The impact of the PDO

is primarily a contrast between the eastern tropical Pa-

cific and the North Pacific, and North America (similar

to ENSO). During its warm phase, the east Pacific tropics

have a warm SST anomaly, and the North Pacific has a

cold anomaly, and vice versa during its cold phase. As a

result, there is a warm anomaly in northwestern North

America and a cold anomaly in southeastern North

America. The Great Lakes are located between the high

and low centers of SAT or on the edges of both. In other

words, any changes in location of these two action centers

would swing theGreat Lakes from one center to the other,

adding complexity to the analysis.

The AMO addresses variability in SST in the North

Atlantic Ocean. It has a quasi-cycle of around either
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70 or 50–90 years (Ting et al. 2009). The AMO is

associated with the thermohaline circulation in the

North Atlantic Ocean. There are two phases in the

AMO: warm and cold. The warm phase strengthens

North Atlantic tropical cyclone activity because warmer

SST provides more moisture to the tropical storms and

hurricanes (Zhang and Delworth 2006). Recent re-

search suggested that the AMO is related to the past

occurrence of major droughts in the U.S. Midwest and

the Southwest. When the AMO is in its warm phase,

these droughts tend to be more frequent or prolonged

(NOAA 2005). As a result, the Great Lakes experience

FIG. 2. Climatological maps for monthly AMIC in all five

Great Lakes for December, January, February, March, and

April for the period 1973–2017.
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warmer-than-normal SAT and/or LST during the warm

phase of AMO. The cold phase produces a cooling SAT

and/or SST in the North Atlantic, as well as in the Great

Lakes.

The correlation of ice cover with PDO is only 0.15,

indicating that the linear correlation is poor (Figs. 5 and

6d and Table 1) with a comparable magnitude, but an

opposite sign, to Niño-3.4 (20.13). The quadratic PDO

FIG. 3. Time series of AMIC during 1963–2017. The thick black line is the 5-yr running mean, indicating the

decadal signal. The thin dashed red line is the climatological mean of 55%, and the blue dotted line indicates the

long-term trend.

FIG. 4. Top three AMICs in the Great Lakes in 1979, 1994,

and 2014.
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has a smaller coefficient (0.11) with ice cover, but with a

comparable magnitude to the linear PDO. Although

there is no statistical significant linear correlation

(20.13) between Niño-3.4 and AMIC, its quadratic

term becomesmuch higher (20.42) and is over the 99%

significance level. NAO has a low correlation (20.1)

with AMIC at only 54% significance level during 1963–

2017; however, its quadratic term has a much lower

correlation with AMIC, indicating a weak linear

correlation.

FIG. 5. The annual time series of AMIC (black), AMO index (red), and PDO index (blue).

The linear correlation coefficients calculated are r(AMIC, AMO)520.38 and r(AMIC, PDO)5
0.15 (see also Table 1). The dashed lines denotes the indices .1 and ,21.

FIG. 6. Scatterplots of AMIC vs (a) NAO, (b) Niño-3.4, (c) AMO, and (d) PDO indices. The linear regression

lines are given with solid black lines. The quadratic curves are also given for Niño-3.4 and PDO. The r indicates the

linear correlation coefficients between the time series of AMIC and the individual indices for the period of 1963–

2017. (see also Table 1).
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However, the correlation between AMIC and AMO

is 20.38 (Fig. 5 and Table 1), which is of the 99.5%

significance level. Nevertheless, its quadratic index has a

much lower correlation with AMIC, indicating that

AMO acts as a linear forcing on ice cover. During the

positive (warm) phase of AMO, there should be less ice

cover in the Great Lakes; during the negative (cold)

phase of AMO, there should be above-normal ice cover

in the Great Lakes.

In summary, the above correlation analysis indicates

that NAO and AMO have a linear correlation with

AMIC, while ENSO and PDO have a nonlinear corre-

lation with AMIC, although the nonlinear PDO has a

slightly smaller coefficient with AMIC than its linear

index, but with a comparable magnitude. Therefore,

both linear and nonlinear impacts of ENSO and PDO

should be included in any regression models, as dis-

cussed in section 5.

b. Scatter analysis

With seven years of data added to this study, the NAO

has a smaller linear correlation (r520.10; Fig. 6a) with

AMIC than that of Bai et al. (2012) (r 5 20.27). The

basic correlation remains unchanged. Niño-3.4 has a

strong quadratic correlation with AMIC (Fig. 6b and

Table 1). Similarly, the scatter analysis is applied to the

AMO and PDO indices against AMIC (Figs. 6c,d), re-

spectively. A linear regression can be obtained between

the AMIC and AMO index (Fig. 6c) with a linear cor-

relation of 20.38 at the 99.5% significance level. The

scatterplot between the AMIC and PDO index shows a

complicated picture with combined quadratic curve

(dashed line; r5 0.11) and a weak linear correlation (r5
0.15) (Fig. 6d and Table 1). The quadratic curve between

the AMIC and PDO is similar to Niño-3.4, but with

opposite curvature and weak nonlinearity. It is noted

that quadratic relation implies that high and low index

values of Niño-3.4 would have a similar warming effect

on lake ice. In other words, either a strong El Niño or a

strong La Niña would lead to warming in the Great

Lakes region, causing less ice cover; however, a stronger

El Niño produces larger warming (i.e., less ice) than a

strong La Niña. This asymmetric effect between the El

Niño and La Niña events on ice cover was discussed by

Bai et al. (2012).

In summary, the AMO has a negative correlation to

AMIC, similar to the NAO; nevertheless, the correla-

tion between ice cover and the AMO index (r520.38)

is of 99.5% significance, while that with the NAO

(r 5 20.1) is not statistically significant, indicating that

the AMO’s impact should be important on decadal

time scales. The PDO has a weak linear correlation

with AMIC (r 5 0.15) and a comparable quadratic

correlation (r 5 0.11) with AMIC. The PDO also

has a positive correlation (r 5 0.11), differing from the

negative correlation between Niño-3.4 and AMIC

(r 5 20.13). Therefore, the interaction or competing

process between the Niño-3.4 and PDO on Great Lakes

ice cover on the crossing interannual and decadal time

scales should be important for a regression model. A

similar situation applies to the NAO and AMO. Fur-

thermore, similar to the interaction or competing impact

between the NAO and Niño-3.4 on interannual time

scales, the interaction between the AMO and PDO on

decadal time scales should be taken into account.

c. Correlation and composites of AMO and PDO

The impacts of teleconnection patterns in the North-

ern Hemisphere are well known (Fig. 7). NAO impact

centers are in the Icelandic low and Azores high (Fig. 7a),

while ENSO indicates the Pacific–North American

(PNA) pattern (Fig. 7b), both of which were extensively

investigated by Bai et al. (2012). The AMO pattern

mimics the NAO pattern with influence spreading on

larger areas including the Great Lakes, Far East, and the

northern Pacific Ocean (Fig. 7c). The PDO mimics

ENSOwith major impacts on the northern Pacific Ocean

and the Arctic (Fig. 7d).

A common feature is that the Great Lakes are not

located in any action centers of these patterns, although

the Atlantic low center of the AMO has a closer cov-

erage over the Great Lakes. The low correlations be-

tween ice cover and teleconnection indices are reflected

by the fact that the Great Lakes are located at the edge

of the action centers for these four patterns. This in-

dicates that the impact of any individual teleconnection

patterns on Great Lakes regional climate and ice cover

is not deterministic, except for an extreme event caused

by one or more patterns, such as the 1998/99 and 2016/17

El Niño events.

Bai et al. (2012) first proposed the concept of com-

peting (or interacting, or interfering) impact/forcing

between ENSO and NAO on lake ice, because neither

alone has high (significant) correlation with lake ice

TABLE 1. Correlations and p values of AMIC with teleconnection

patterns. The coefficients in boldface are significant.

Index r p value Significance (%)

Niño-3.4 20.131 0.340 66

(Niño-3.4)2 20.415 0.002 99.8

NAO 20.102 0.458 54.2

NAO2 20.004 0.979 1

AMO 20.377 0.005 99.5

AMO2 20.096 0.484 51.6

PDO 0.151 0.271 62.9

PDO2 0.109 0.429 57.1
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because the Great Lakes are not located in any action

center of both patterns, but rather at the edge of the

action centers. This is reflected by the fact that AMIC

has low linear correlation with ENSO, NAO, and PDO

(not at 95% significance level), except for r 5 0.38

with AMO at the 99.5% significance level as shown in

Table 1. The four patterns actually coplay or coexist

in the Great Lakes region. They often amplify the

warming/cooling effects if they are in the same warming/

cooling phase. However, when they are out of phase,

such as warming versus cooling phase in one or more

patterns, their joint effect can be partially canceled out.

Therefore, the warming/cooling effect significantly

weakens; this is the so-called interference. When one

pattern stands out over the others, havingmuch stronger

impact on the region, this is the competing effect. This

interaction, competing, or interference process is over

the spatial distribution and time scales of these four

patterns. Therefore, this in-phase or out-of-phase pro-

cess on three time scales should be taken into account:

interannual (ENSO vs NAO), decadal (AMO vs PDO),

and crossing interannual and decadal (ENSO vs PDO

and NAO vs AMO).

Figure 8 shows the spatial linear correlation map in

North America between SAT and the four indices.

There is positive correlation between the NAO and

SAT over the Great Lakes region, indicating that the

positive (negative) NAO leads to anomalous high (low)

SAT (Fig. 8a). Similarly, over the Great Lakes region,

ENSO in general has a positive correlation with local

SAT, that is, El Niño (La Niña) leads to anomalous high

(low) SAT (Fig. 8b). AMO has a strong positive corre-

lation with SAT in Lakes Superior and Michigan and

has a weak positive correlation with SAT in Lakes

Huron and Ontario and has no correlation with SAT in

Lake Erie (Fig. 8c). Interestingly, PDO has a weak

positive correlation with SAT in Lake Superior, while a

negative correlation with SAT in Lakes Erie and On-

tario (Fig. 8d). PDO has negligible correlation with

Lakes Michigan and Huron.

Lake Ontario is only half affected by PDO. The possi-

ble reasons are as follows: 1) SinceLakeOntario is located

FIG. 7. Spatial regression map between the December–March (DJFM)-averaged SLP and indices of (a) NAO,

(b) Niño-3.4, (c) AMO, and (d) PDO during 1949–2016. The color bars are in dynamic height (hPa).
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near the negative center of PDO, SAT in the eastern

Ontario is affected by the negative center. Note that al-

though Lake Ontario is located at the edge of the two

action centers (Fig. 8d), the negative center is much closer

to the Great Lakes than the positive center that is located

offshore of British Columbia, Canada; and 2) PDO has a

weak linear relationship with AMIC (which is reversely

correlated with SAT; see Table 1). This is similar to the

nonlinearity of ENSO: the SAT pattern derived from

ENSOhas a zero line crossing themidbasin, that is, across

Lake Ontario based on the EOF analysis (see Fig. 10b of

Wang et al. 2012a). In addition, Lake Ontario is a deep-

water lake in comparison, and has the lowest ice cover and

largest standard deviation (i.e., variability, see Fig. 3 of

Wang et al. 2012a). Because of the nonlinear effects of

ENSO and PDO, and the large variability, LakeOntario

ice cover is the most difficult to predict.

To further reveal that Great Lakes LST is also im-

pacted by the AMO and PDO, positive AMO (AMO1)

and negative AMO (AMO2) years were selected for

the period 1995–2017, during which satellite-measured

LST data are available (AMO1 for 1998–2017, AMO2
for 1995–97, PDO1 for 1995–98 and 2014–16, and

PDO2 for 2008–13). Figure 9 shows the winter SAT

(Fig. 9a) and winter LST (Fig. 9b) difference between

the AMO1 and AMO2 years. AMO is positively

correlated with both SAT and LST. During the posi-

tive AMO, there is a positive LST anomaly over four

Great Lakes, except for Lake Erie and along the coast

with ice cover, and vice versa during the negative AMO

years. The LST difference along the coast and Lake Erie

is near zero because 1) as shown in Fig. 8c, AMO has

near-zero correlation with SAT in Lake Erie, and 2) ice-

covered LST is near freezing temperature in both phases

of AMO.

Figure 10 shows the cold SAT anomaly during

the positive phase of PDO (PDO1; Fig. 10a) and

warm SAT anomaly during the negative phase PDO

(PDO2; Fig. 10b). As a result, the LST difference

(Fig. 10c) between the positive and negative phase of

PDO shows cold anomalies over most of the Great

Lakes, except for Lake Erie and along the coast with

FIG. 8. Spatial linear correlation map between the SAT andDJFM indices of (a) NAO, (b) Niño-3.4, (c) AMO, and

(d) PDO during 1949–2016.
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ice cover nearly each year. Positive PDO leads to

anomalous cold LST in most of the lakes, except for

Lake Erie and along the coast with ice cover. During

the negative phase of PDO, most of the Great Lakes

experience a warm anomaly, except in Lake Superior:

the western part experiences a cold anomaly, and the

eastern part has zero anomaly (Fig. 10b).

The summer LST difference between the AMO1 and

AMO2 shows a warm anomaly (Fig. 9c) over the Great

Lakes, except for Lake Erie, consistent with the winter

warm anomaly (Fig. 9b). By contrast, the summer LST

difference (Fig. 10d) between the PDO1 and PDO2
shows a cold anomaly over the Great Lakes, except for

Lake Erie, consistent with the winter cold anomaly

(Fig. 10c). Therefore, Lake Erie LST in general is not as

sensitive as other lakes with deeper water (i.e., larger

heat content) in response to the decadal teleconnection

forcing (see Figs. 9 and 10) because it is a shallow lake

(mean depth of 19m) in comparison to the other lakes

(mean depth of Superior is 148m, Michigan is 84m,

Huron is 59m, and Ontario is 85m; see Fig. 1). Thus,

Lake Erie is generally ice-covered nearly every year,

except for extremely warm winters such as 1983, 1991,

1998, 2002, 2006, 2012, and 2017; they were either strong

El Niño, strongNAO1, or combined strong ElNiño and
NAO1 events (Bai et al. 2015).

d. Composite analysis of Great Lakes ice cover

Since lake ice cover has an inverse (i.e., negative)

correlation with SAT (r 5 ;20.8; Bai et al. 2011, 2012)

and LST (r 5 20.44), it is expected that during the

AMO1 (AMO2) and during the PDO2 (PDO1)

phase, there is anomalously less (more) ice cover in the

Great Lakes. AMIC was selected in the following

FIG. 9. Spatial difference (or anomaly) map between AMO1 years (1998–2017) and AMO2 years (1973–97) for

(a) SAT and (b) winter and (c) summer LST difference between the AMO1 and AMO2 (8C).
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winters according to the AMO and PDO indices (see

Fig. 5). The positive/warm phase of AMO has 14 win-

ters: 1967, 1998, 1999, 2002, 2004, 2005, 2006, 2007, 2008,

2010, 2011, 2013, 2016, and 2017; and the negative/cold

phase of AMO has 10 winters: 1972, 1973, 1974, 1975,

1976, 1983, 1985, 1986, 1987, and 1993. Since n1 5 14

and n2 5 10 [see Eq. (1)], the degrees of freedom are

14 1 10 2 2 5 22. The positive (cold anomaly in the

Great Lakes) phase of PDO has 12 winters: 1970, 1977,

1984, 1985, 1986, 1987, 1988, 1994, 1998, 2003, 2015, and

2016; and the negative (warm anomaly in the Great

Lakes) phase of PDO has 10 winters: 1964, 1971, 1972,

1974, 1976, 1991, 2000, 2009, 2011, and 2012. Since n1 5
12 and n2 5 10 [see Eq. (1)], the degrees of freedom are

12 1 10 2 2 5 20.

Figure 11 shows the composite mean ice cover of

AMO1 (Fig. 11a) and AMO2 (Fig. 11b) during the

period 1963–2017. The ice cover difference (Fig. 11c)

between theAMO1 andAMO2 indicates less ice cover

over the entire Great Lakes with the largest ice deficit

being in Lake Superior. The Student’s t test [Fig. 11d;

see Eq. (1)] indicates that Lake Superior is the major

region where AMO influence is noticed. Northern

Lake Michigan and Lake Huron are very sensitive to

AMO. These results are consistent with SAT and LST

difference (Fig. 9).

Similar to AMO, Fig. 12 shows the composite mean ice

cover of PDO1 (Fig. 12a) and PDO2 (Fig. 12b) during

the period 1963–2017. The ice cover difference (Fig. 12c)

between the PDO1 and PDO2 indicates more ice cover

over the entireGreat Lakes with the largest anomalous ice

cover being in Lakes Michigan and Huron, eastern Supe-

rior, and eastern Ontario. The Student’s t test (Fig. 12d)

indicates that Lakes Michigan and Huron and eastern

Lake Ontario are the major regions impacted by PDO.

The PDO has no significant influence on ice cover in Lake

Superior and Erie over the 95% significance level.

5. Development of multivariable regressionmodels

Based on the investigation above, multivariable re-

gression models can be constructed following Bai et al.

(2012). The following model is the same as Bai et al.

(2012) except that the data are now extended through

2017, and it only includes NAO, Niño-3.4, and their in-

teraction (i.e., the competing term):

FIG. 10. Spatial composite DJFM SAT anomaly map referred to the climatology/mean of 1981–2010 for

(a) PDO1 years and (b) PDO2 years and (c) winter and (d) summer LST difference between PDO1 and

PDO2 (8C).

15 SEPTEMBER 2018 WANG ET AL . 7261



Y5 0:462 0:02Niño-3:42 0:5(Niño-3:4)2

2 0:33NAO1 0:29NAO(Niño-3:4)2, (3)

where Y is normalized AMIC. The correlation between

the model hindcast time series and the observed AMIC

is r 5 0.48 (r2 5 0.23; see Fig. 13a).

As discussed above, the interaction or compet-

ing mechanisms of the teleconnection patterns on

ice cover should be important. These competing

mechanisms include 1) the NAO and Niño-3.4 on in-

terannual time scales, as discussed in Bai et al. (2012);

2) the NAO and AMO and the Niño-3.4 and PDO

on crossing interannual and decadal time scales; and

3) the AMO and PDO on decadal time scales. Thus,

the following comprehensive, full regression model is

constructed:

Y5 0:322 0:18Niño3:42 0:44(Niño3:4)2 2 0:44NAO1 0:32NAO3 (Niño3:4)2

2 0:58AMO1 0:28PDO1 0:18PDO2

2 0:16AMO3NAO2 0:08PDO2 3 (Niño3:4)2

1 0:18AMO3PDO2. (4)

The correlation further increases from r 5 0.48 (r2 5
0.23) to 0.69 (r25 0.48) in Eq. (3). Therefore, including

the AMO and PDO and their interactions significantly

improves the prediction skill (Fig. 13b) from the

FIG. 11. Spatial composite AMIC during (a) AMO1 years, (b) AMO2 years, (c) difference between AMO1 and AMO2 years, and

(d) Student’s t test areas for over the 95% significance level.
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original model that only includes the NAO and Niño-
3.4 (Fig. 13a).

The statistics of the regression models versus mea-

surements is listed in Table 2. The dynamical mechanisms

for Eq. (4) (i.e., the full model) are as follows: The first

row is the same as Bai et al. (2012) and only includes

the NAO and Niño-3.4 and their competing effects on ice

on interannual time scales. The second row includes the

individual effect of linear AMO, PDO, and quadratic

PDO on lake ice on decadal time scales. The third row

represents the dynamical interactions or competing ef-

fects between the AMO and NAO and between non-

linear (quadratic) PDO and Niño-3.4 (Wu et al. 2005) on

the crossing decadal and interannual time scales. The

fourth row includes the competing effect between AMO

and quadratic PDO on ice cover on decadal time scales.

Figure 13b shows the comparison between the full

model and the observed AMIC, with the AMO and

PDO included. Several important extremely high and

low ice years were captured, compared with the original

model that significantly underestimates the extreme

events, such as in 1977–79, 1986, 1994, and 2003.

Therefore, it is important to include the AMO and PDO

patterns on decadal time scales, their interactions or

competing impacts on the decadal time scales, and the

competing impacts with the NAO and Niño-3.4 on in-

terannual time scales in predicting Great Lakes ice

cover.

As discussed above and in previous studies, LST

has a close negative relationship with lake ice cover

(r 5 20.44), which needs to be considered. For the

purpose of seasonal projection, November LST was

chosen to predict lake ice cover in the coming winter.

The reasons are 1) November is the month during which

the Great Lakes are experiencing cooling and thus

deep convection, but it is before the surface–bottom

FIG. 12. Spatial composite AMIC during (a) PDO1 years, (b) PDO2 years, (c) difference between PDO1 and PDO2 years, and

(d) the 95% significance level areas using the Student’s t test.
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overturning that often occurs in December when lake

surface temperature drops to 48C. Therefore, November

LST has larger variability than doesDecember, and is an

ideal preconditioning temperature for timing the for-

mation of lake ice; and 2) in early–mid-December, we

would like to make projections of maximum ice cover

into winter (usually occurs in late January–earlyMarch).

At the time, we can collect November temperature for

all the lakes.

There are two types of LST data in the Great Lakes:

1) satellite measurement as introduced in section 2c

starting from 1995 to the present, and 2) buoy in situ

measured LST starting from 1982 to 2016. The linear

correlation between the two time series is 0.79, and

that between the buoy LST and AMIC is 20.44. We

constructed regression models using both data and the

results are consistent to each other. Therefore, we chose

the buoy data because they cover a longer period.

When LST only was used to hindcast the ice cover, the

correlation between themodel result and the ice cover is

r 5 0.46 (not shown), which is higher than the correla-

tion (0.48; Fig. 13a) using the NAO and Niño-3.4 indices
only (Bai et al. 2012). When combining LST, NAO, and

Niño-3.4, the correlation between the hindcast time se-

ries and measurement increases to 0.58 (not shown). To

compare the performance of the full models with and

without LST during the shortened period 1982–2016, the

full regression model including all four teleconnection

patterns [Eq. (4)] without November LST is constructed

as follows:

FIG. 13. (a) The hindcast using ENSO and NAOonly (Bai et al. 2012) (in blue) and observed

AMIC (black), and (b) as in (a), but with all the effects from the four patterns: NAO, AMO,

Niño-3.4, and PDO, and their combined competing mechanisms. The corresponding linear

correlation between themodel results and the observedAMIC is given at the top of (a) and (b).

The 95% significance criterion (coefficient, i.e., level) based on Monte Carlo simulation is

provided in the parentheses.

TABLE 2. Statistics of the multiple variable regression models using data from 1963 to 2017 and from 1982 to 2017. The coefficients in

boldface are significant. [Correlation is Pearson’s correlation coefficient r; p value is the probability this correlation would happen by

random chance; adj r2 is r2 adjusted (this is important for multiple variable regression); within 20% is the percentage of years that model

predicted within 20% of observed (less than 20% absolute error); and within 10% is same as within 20%, but for 10%.]

Data used RMSE Correlation p value r2 Adj r2 Within 20% Within 10%

ENSO and NAO 1963–2017 20.49 0.48 2.3 3 1024 0.23 0.17 65% 38%

Full model 1963–2017 17.95 0.69 5.4 3 1029 0.48 0.36 78% 47%

Full model 1982–2017 19.18 0.71 1.1 3 1026 0.50 0.31 75% 53%

Full model with LST 1982–2017 17.45 0.78 2.1 3 1028 0.61 0.43 83% 58%
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Y5 0:572 0:18Niño3:42 0:42(Niño3:4)2 2 0:20NAO1 0:13NAO3 (Niño3:4)2

2 3:90AMO1 0:25PDO2 0:04PDO2

2 0:58AMO3NAO2 0:01 PDO2 3 (Niño3:4)2

1 2:35AMO3PDO2 , (5)

and with November LST (in 8C) was constructed as follows:

Y5 0:302 0:19Niño3:42 0:39(Niño3:4)2 2 0:05NAO1 0:04NAO3 (Niño3:4)2

2 0:67AMO1 0:27PDO2 0:12PDO2

2 0:001AMO3NAO1 0:01PDO2 3 (Niño3:4)2

1 0:53AMO3PDO2

2 0:35LST, (6)

whereLST is the normalizedNovember LSTwith amean of

8.118C and standard deviation of 0.838C. The correlation

between the hindcast ice cover and measured ice cover

during the period 1982–2016 without LST [with Eq. (5)] is

r 5 0.71 (r2 5 0.5; see Fig. 14a). With LST included, the

correlation significantly increases to 0.78 (r2 5 0.61;

Fig. 14b). The statistics of both models are also listed in

Table 2. Therefore, November LST is a key parameter

to hindcast lake ice cover because it provides a pre-

conditioning of lake ice formation.

In summary, as Table 2 indicates, all four regression

models are statistically significant. The hindcast skill of the

full model [Eq. (4)] is significantly improved, capturing 48%

of the total variance, compared to only 23%by using ENSO

and NAO indices only [Eq. (3)] for the period 1963–2017.

WithNovember LST included to the fullmodel [Eq. (6)] for

the period 1982–2016, the hindcast skill is also significantly

increased by capturing 61% of the total variance, compared

to 50% in the full model without LST.

To further confirm that the regression models using the

full time series better represent both climate dynamics

and statistical properties, a jackknifing method was used

to investigate the RMSEs of the regression models us-

ing only a subset of the data, as discussed in detail in the

appendix.

6. Conclusions and discussion

On the basis of the above investigation, the following

conclusions can be drawn.

FIG. 14. (a) As in Fig. 13b, but with the period 1982–2016. (b) As in (a), but the full model with

November LST.
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1) It is found that the AMO has a negative linear

correlation (r 5 20.38) with AMIC at the 99.5%

significance level, in a similar manner to, but larger

than, the NAO (r 5 20.10). The PDO has a weak

linear correlation (r 5 0.15) with AMIC, similar to,

but with the opposite curvature of the Niño-3.4
(r520.13). However, both PDO and Niño-3.4 have
nonlinear effects on Great Lakes ice cover.

2) During the positive (negative) AMO events, SAT over

the Great Lakes and LST have positive (negative)

anomalies. As a result, there is less (more) lake ice

cover in the Great Lakes during the positive (negative)

AMOphase. The Student’s t test shows that the primary

impact region includes Lake Superior, Lake Huron,

and northern Lake Michigan. During the positive

(negative) PDO events, SAT over the Great Lakes

and LST have negative (positive) anomalies. Accord-

ingly, there is more (less) lake ice cover in the Great

Lakes during the positive (negative) PDO phase. The

Student’s t test shows that the major impact region

includes Lake Huron, Lake Michigan, and eastern

Lake Ontario.

3) Comprehensive regression hindcast models were de-

veloped using all four teleconnection patterns: NAO

and Niño-3.4 on interannual time scales, and AMO and

PDOon decadal time scales. The full model constructed

here can capture 48% of the total variance of ice cover,

compared to only 23% of Bai et al. (2012). The corre-

lation between the hindcast model results and obser-

vations is 0.69. This model includes not only the

interactions/competing effects within interannual time

scales (NAO and Niño-3.4) and within decadal

time scales (AMO and PDO), but also includes the

competing effects across interannual and decadal time

scales such as within Niño-3.4 and PDO, and within

NAO and AMO.

4) When November LST was added to the equation, the

hindcast skill is significantly improved from r5 0.71 (r25
0.50) to 0.78 (r2 5 0.61); that is, the total variance

explained by the model increases from 50% to 61%.

This indicates that the late-autumn preconditioning of

lake surface temperature andheat content has significant

contribution to lake ice formation in the coming winter.

In the appendix, it is shown that since the climate

system is a nonstationary stochastic process and has

multidecadal time periods, the jackknifing method

may not be suitable to construct the regression

models using only a subset of the 55-yr data. How-

ever, this method may be suitable for the stationary

stochastic processes such as ocean surface waves.

It is important to note that there is a decreasing trend in

the AMIC during the period 1963–2017 (see Fig. 3). The

portion of the decrease that can be attributed to anthro-

pogenic climate change (ACC) is unknown. For purposes

of the multivariable regression analysis, the contribution

of ACC to this observed change in ice cover is assumed to

be negligible, compared to the AMO. While the AMO is

defined by the residual SST anomaly after detrending

North Atlantic water temperatures over a much longer

period starting around 1880, which might also detrend

portion of the long-term upward trend of ACC. When

considering only the 1963–2017 period, the AMO has a

distinct upward trend. Since the other indices do not have

this distinct positive trend over the period of interest, the

multiple regression models identify the positive trend in

AMO as a main contributor to the downward trend in

AMIC, even though ACC may also be a contributor, it is

not included in the regression models of this study.

A challenge for the quantitative description of the re-

lationship between AMIC and individual teleconnection

patterns is that the correlation is not statistically significant

such as with the PDO, Niño-3.4, and NAO. This had long

been a barrier in the past several decades for scientists to

achieve a hindcast model until the study of Bai et al.

(2012). A combination approach using both Niño-3.4 and
NAO patterns was proven to reasonably reproduce

AMIC, although not perfectly (Bai et al. 2012). Based on

the same idea, this study further includes the AMO and

PDO and their interactions on decadal time scales and the

interactions with interannual time scales (Niño-3.4 and

NAO), as well as LST. The hindcast model was further

improved. This hindcast model will be used to project

seasonal AMIC in the next few years, whose predictability

skills will be evaluated for a further improvement.
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APPENDIX

Jackknifing Analyses of Regression Models

To further confirm that the regression models in Eqs.

(3)–(6) are robust, the jackknifingmethodwas suggested

to be applied to the data to cross check the model’s

skills. Two experiments were conducted. First, a quick

estimate of RMSE can be obtained by training the

model (finding the model coefficients) on the first half of

the data, then using this model to predict the second half

of the data. The resulting RMSE would reflect the real

predictive skill of the model. Conversely, we train the

model on the second half of the data and use it to predict

the first half. Table A1 shows the RMSEs that are de-

rived from the jackknifing method.

It is clear that using one half of the data to hindcast the

other half leads to an increase in RMSE, particularly

when 1) more predictors, especially decadal predictors,

are included (e.g., full model and full short1 LST), and

2) the time series are short.

As we know, the climate system is a nonstationary

stochastic process. A climate shift in lake ice in 1998 (Van

Cleave et al. 2014) is evidence of nonstationarity, similar

to other subsystems of the global climate (Milly et al.

2008; Razavi et al. 2015; among others). Based on Fig. 3,

neither annual data nor the 5-yr running mean is sta-

tionary. The 55-yr data barely cover one cycle of AMO

of a 50–70-yr period. Therefore, using the first half of the

datawith a differentmean climate system (e.g., a negative

AMO phase) to hindcast the second half (e.g., a positive

AMO phase) contradicts the climate dynamics and non-

stationarity. This is why RMSE significantly increases.

Furthermore, we randomly picked 70%of the data (to

increase the training period length) to fit the model (find

model coefficients), then computed RMSE using model

predictions for the remaining 30%of the data.We repeated

this 1000 times with different random subsamples (training/

validation) of the data. The resulting estimates of RMSE

would provide the ensemble mean and the RMSE values.

This process would reflect the true predictive potential of

each model if the climate system is not a nonstationary

stochastic process. Each model was repeated to examine

whether or not includingmore predictors increases the true

hindcast skill. The correlation values between the observed

and predicted time series were calculated. Table A2 shows

both the RMSEs and correlation with p values.

It is shown that 1) including more predictors increases

the true hindcast skills in terms of correlation and p value,

while RMSE virtually remains the same, which is con-

sistent with Table 2 using the full time series, and 2) the

longer the time series, the lower theRMSE. The reason is

becausemodels derived from all the realizations (samples

or data points) [Eqs. (3)–(6)] extract all dynamic pro-

cesses (or cycles), which include as many as both posi-

tive and negative phases of the oscillations.

The limitation of the jackknifing method for the cli-

mate system is that the climate system is a nonstationary

stochastic process, with climate shifts. A 30-yr period, as a

conventional rule of thumb for a climatological mean, may

not be representative of long-term climate and lake ice

processes because of multidecadal oscillations, such as

the AMO that has a 50–70-yr period. Nevertheless, the

jackknifing method may be suitable for stationary sto-

chastic processes such as ocean surface waves.
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